
COP4600.001C11: Operating Systems

Project Four: Interprocess Communication

July 3, 2011

1 Description

In this project you will learn about interprocess communication using pipes
using a simple model. You will write a program that reads its input from a
named pipe, and also communicates bidirectionally with two other processes
using pipes.

2 Specifications

I will provide you with a native ELF executable, called commander, which
takes a single argument, the name of a named pipe (aka a FIFO). commander
will attempt to create the named pipe and, if successful, will communicate
with your proj4 executable via this FIFO. It issues commands, one per line,
with syntax

command n: <command>

, where n and command are variable, of course. Your compiled program,
proj4, should do the following:

1. Accept two arguments: (1) The name of the FIFO to which commander

writes, because proj4 will need to read from it, and (2) The name of
another file to use for this execution (I’ll refer to this file as tempfile for
the rest of the specs, but it will get its name from the second argument).
Make sure you check the arguments as thoroughly as possible before
passing them to functions in your code!

1

2. If the correct arguments are given, your program will print begin to
stdout, and spawn two child processes: One for reading to tempfile,
and one for writing to tempfile. The parent process must communi-
cate with the child processes using unnamed pipes.

3. At this point, commander will generate a series of commands, each one
either read, write, or quit. Your program will process commands
given from commander until a quit command is encountered (which it
will process, too, but as the final command).

4. If the command is a write, the writer child will append to tempfile

on a newline a random integer between 1 and 100, inclusive.

5. If the command is a read, the reader child will read the next unread
line (consisting of a single integer) from tempfile, pass it back to the
parent, who then will print read n to stdout, where n was the integer
read. If no new integers can be read, the reader child will pass −1 back
to the parent process.

6. If the command is a quit, the parent will communicate to both chil-
dren to quit. At this point the reader child must send to the parent
all remaining unread integers from tempfile (if there are any), the
parent will print them, then both children should terminate. The par-
ent should then delete tempfile, print the total number of commands
serviced to stdout, and then print quit to stdout before terminating.

Note that the parent process is the only process that ever prints to stdout.
The commander program will delete the FIFO as its final act before termina-
tion, so your program should not attempt to remove it. Your program should
test many things (number of arguments, existence of the FIFO to read, suc-
cess of the fork calls, etc.), any one of which could fail. The usual project
policies (regarding late submission, tokens, academic dishonesty, etc.) apply.
You may not work with anyone else on this project.

3 Files

Download the associated commander executable from the assignment link in
Blackboard. It will run on the c4 lab pcs, and probably on any major Linux

2

distribution. You should submit the following files, zipped into an archive
named lastname-firstname-proj3.zip:

• makefile

• proj4.c

4 Testing

Your submission will be evaluated using a series of commands similar to the
following:

$ make all

$../commander example

/* process is executing, but blocked on FIFO */

$./proj4

incorrect arguments

$./proj4 example

incorrect arguments

$./proj4 example t t2

incorrect arguments

$./proj4 example tempfile

begin

read 13

read 42

read -1

read -1

read 89

read -1

13 commands

quit

3

5 Extra credit

You have two opportunities for extra credit on this project, and you may
attempt either or both. I will give partial credit where appropriate. The
weight designation corresponds to points on your final course grade.

1. A report (1pt.): Create a report similar to the report for the last
project, including all the sections it had. Answer the following ques-
tions in the report:

(a) What communication models exist for interprocess communica-
tion? What communication models exist for interthread commu-
nication? Discuss as many differences between the multiprocess
and multithreaded program models as you can. Address topics
like communication, protection, and efficiency, among other con-
siderations.

(b) How does Linux implement named pipes and unnamed pipes?
Specifically how do their implementations differ?

(c) Explain in the context of IPC, processes, and file I/O what bash
(or whatever Unix shell you’re running) does with the following
command

$ cat proj4.c | grep include | tee out

2. Interprocess synchronization (1pt.): The writer child can always
proceed, but the reader child may receive a read command when there
is nothing new to read. In that case the reader child would return −1
according to the original spec. Modify your code to synchronize the
child processes so that the reader child will block on a read command
until the writer child has written something new. If your solution re-
quires IPC between the two child processes, you must use unnamed
pipes.

4

